If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2)=(140)
We move all terms to the left:
(x^2)-((140))=0
determiningTheFunctionDomain x^2-140=0
a = 1; b = 0; c = -140;
Δ = b2-4ac
Δ = 02-4·1·(-140)
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{35}}{2*1}=\frac{0-4\sqrt{35}}{2} =-\frac{4\sqrt{35}}{2} =-2\sqrt{35} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{35}}{2*1}=\frac{0+4\sqrt{35}}{2} =\frac{4\sqrt{35}}{2} =2\sqrt{35} $
| 2x(4+6)=40 | | 30(2)=h | | 124=(6+a)4 | | -17+3h+6=8+2h | | 16.1+d=22;d=6.1.;= | | -4(9-3r)=0 | | –2(r−6)=–8 | | -11-10d=4-9d | | f()=48 | | 2v+30=9+5v | | (x^2)=(156) | | -11-6k=-7k | | f+6=51 | | 54=9x/5+32 | | 2x+3(x-1)=4(2x-5) | | 29=x+3 | | -32=x.2 | | 2x+x+20=119 | | 7k-3k=3(k-1) | | w−15=–2 | | -1/2x-(1/2x+4)+12=17x-6+(3x+5/6) | | (5x+62)-(3x+47)=37 | | 10+6x-3=6x+7 | | 4(p–7)=20 | | (k-4)²=-3 | | (4y+7)=128 | | y=45-(92+7) | | 2x+x+20+119=180 | | q—17=18 | | (5x+62)+(3x+47)=37 | | -3/8x-5/24x+1/3x=-30 | | 7x-2x+7= |